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Abstract Imposing a temperature gradient on a narrow channel can trigger an acoustic instability, driving self-
sustained oscillations of the fluid. The temperature gradient required to trigger the instability is dramatically
decreased when the channel wall is covered by a thin film of volatile liquid that can undergo phase change. In
the present work, we consider a volatile-droplet aerosol on which a temperature gradient is imposed, and theoreti-
cally examine whether the heat and mass transfer between the droplets and gas can trigger the acoustic instability.
The aerosol structure is separated into two disparate scales: the droplet ensemble, modelled as a periodic grid of
channels through which the gas flows, and the ‘micro-scale’, in which the flow around a single droplet serves as an
elementary unit in the periodic structure. This scale separation led to the derivation of a new function that accounts
for losses caused by viscous, thermal and diffusive relaxation processes due to droplet–gas interactions. A stability
analysis is then performed, utilising the derived ‘loss’ function, calculating the minimum temperature difference,
ΔT , that triggers the instability. Our analysis suggests that a non-uniform temperature distribution across aerosols
may lead to an acoustic instability, which can subsequently enhance coalescence and agglomeration of droplets
within an aerosol. Such phenomenon may be utilised to trigger or enhance the operation of thermoacoustic engines,
and may possibly occur naturally in atmospheric clouds due to uneven solar irradiation.

Keywords Aerosol · Thermcoustic instability

1 Introduction

Acoustic oscillations are long known to be spontaneously triggered in a channel along which a temperature gradient
is imposed [1–3]. Small displacements of a compressible fluid within the channel are enhanced due to heat transfer
from the (hot) channel wall to the fluid as the latter compresses, and from the fluid to the (cold) wall as it expands [4].
Practical examples of this phenomenon include the Pyrophone [5], a musical instrument in which flames are used to
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trigger acoustic waves in tubes of varying lengths; undesired excitation of acoustic oscillations inside combustion
chambers due to unsteady heat release [6,7]; and, more recently, the concept of a thermoacoustic engine, where
intense acoustic waves are intentionally generated and used as mechanical power or converted to electricity [8–11].
In the latter, very large temperature gradients, aligned with the desired wave propagation direction, are required to
trigger the instability. However, a gas mixture containing a condensible specie as the working fluid can dramatically
lower the temperature gradient [12–15]. In this configuration, most of the heat is delivered to the gas at constant
temperature, in the form of latent heat; the condensible fluid undergoes a cycle of evaporation and condensation,
drawing and releasing heat to/from the channel wall, respectively. The linear theory of thermoacoustics, first derived
by Rott [16], was modified by Raspet et al. [14] to account for the phase-change heat transfer, and later generalised
by Offner et al. [17] to account for various mass transfer mechanisms. The latter also conducted a stability analysis in
which the theoretical model was validated against experimental results reported by Tsuda and Ueda [15], revealing
a good quantitative agreement.

Acoustic instabilities in aerosols have been studied extensively in the context of photoacoustic spectroscopy.
This method can determine material properties via irradiation by an electromagnetic pulse that heats the material,
resulting in its expansion, which propagates as an acoustic signal picked up by sensitive ultrasonic transducers [18].
In particular, this method has been used to measure light absorption of aerosols, mainly aerosols of black carbon
particles [19]. Raspet et al. [20] investigated light absorption in aerosols of volatile droplets, showing how phase
change in the droplets consumes a significant share of the radiative heat. The low radiative flux used in photoacoustic
spectroscopy uniformly heats the aerosol, generating acoustic signals intense enough to allow for high-accuracy
sensing, yet far too weak to induce significant motion of the suspended matter within the aerosol.

Herein, we speculate on the possible excitation of acoustic oscillations in aerosols of volatile droplets, over which
a temperature gradient is imposed. This may naturally occur in atmospheric clouds, where uneven heating creates
a temperature gradient within an aerosol [21], which may prove sufficiently large so as to trigger the instability.
The complex dynamics of the droplets and gas following the instability is beyond the scope of the current work.
However, based on previous studies that demonstrated how aerosol-droplet coagulation is enhanced in an acoustic
field [22,23], we suggest that the induced oscillatory motion can lead to coalescence and agglomeration of droplets,
possibly enhancing precipitation. From an engineering point of view, aerosols may replace the existing narrow-
channel solid structures (typically referred to as ‘stacks’) used in thermoacoustic engines as the hub for acoustic
power production [24,25], thus decreasing the number of system parts and potentially reducing viscous losses. In the
forthcoming analysis, we theoretically investigate the acoustic instability in an aerosol of volatile droplets. Building
upon the works of Raspet et al. [14] and Offner et al. [17], we consider the instability as occurring primarily due
to mass transfer between the droplets and gas that comprise the aerosol, showing that a low temperature gradient
may be sufficient to trigger the instability. However, the configuration considered here—flow within an aerosol
of spherical droplets—is far more complex compared to previous studies, and requires the development of a new
method with which to model the flow.

The paper is organised as follows: in Sect. 2 we describe the problem under consideration, Sect. 3 is devoted to
the derivation of the theoretical model, in Sect. 4 we investigate the new loss function for aerosols, in Sect. 5 we
describe the methodology through which the stability analysis is carried out, followed by results and conclusions
in Sects. 6 and 7, respectively.

2 Problem formulation

We consider an aerosol composed of a gas and small spherical droplets, on which a unidirectional temperature
difference, ΔT (aligned with the coordinate z), is imposed (see Fig. 1a). Setting z = 0 as the left end of the
aerosol, we have the region 0 ≤ z ≤ L occupied by the aerosol, while the remaining space is a homogeneous
gaseous environment, which may be infinite for atmospheric aerosols or finite in case an aerosol is introduced into
a resonator.
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Fig. 1 Schematic drawing of the considered system configuration: a an aerosol of length L composed of small droplets with radius
R, on which a unidirectional temperature difference, ΔT , is imposed, with Tc and Th denoting the aerosol cold and hot temperatures,
respectively. b a close view of a single droplet in the aerosol, showing its system of coordinates in which the local flow field is evaluated.
The two images show the problem’s two distinguished scales that are used to recover the flow field in the entire aerosol

The base state of the aerosol is quiescent, where small random pressure fluctuations decay rapidly due to viscous,
thermal and diffusive interactions between the droplets and gas [4,26]. Imposing a temperature difference on the
aerosol is expected to induce an additional thermoacoustic interaction, in which acoustic power is generated as
the gas draws/delivers heat and mass from/to the droplets while oscillating. In case ΔT is sufficiently large, such
interaction enhances the oscillations [25]. The stability limit is defined as the state for which the thermoacoustic
amplification exactly balances the dissipation, such that further increasing ΔT will lead to a loss of stability in the
aerosol.

3 Theoretical model

3.1 Scale separation

Oscillatory flow inside long channels may be described by a linearised axial momentum equation [27],

∂v̄z

∂ t̄
= − 1

ρ̄m

d p̄1

dz̄
+ ν∇̄2⊥v̄z, (1)

in which the nonlinear terms are omitted on asymptotic grounds, since h/ l � 1 with h and l the channel width and
length, respectively. Here, a bar marks a dimensional quantity, t is time, z marks the wave propagation direction,
vz is the fluid velocity component aligned with the oscillations, ρ is the fluid density, p is the pressure, ν is the
kinematic viscosity and the ∇⊥ operator denotes derivatives along the axes perpendicular to z. The subscripts ‘m’
and ‘1’ denote time-averaged (mean) and oscillating quantities, respectively. Assuming a monochromatic wave
resonates in the system, a standard harmonic temporal dependency exp

(
iωt̄
)

(with ω the resonant frequency) is
used for all oscillating variables. Introducing the scaling

t = ωt̄ , z = λ−1 z̄ , ∇⊥ = h∇̄⊥ , vz = λ−1ω−1v̄z , ρ = ρ−1
0 ρ̄ , p = ρ−1

0 λ−2ω−2 p̄, (2)

where λ is the wavelength and ρ0 is the fluid reference density, we rewrite (1) in dimensionless form
(
∇2⊥ − τ̂ 2

ν

)
vz = 1

ρm

dp1

dz
, (3)

123



16 Page 4 of 14 A. Offner, G. Z. Ramon

where τν = h (ω/ν)1/2 is the Womersley number and a hat sign denotes multiplication of any scalar quantity by
i1/2, e.g. τ̂ν ≡ i1/2τν . For a channel of arbitrary cross section, Arnott et al. [28] showed that (3), when subjected to
boundary conditions of no-slip at the channel wall and symmetry along its axis, has a general solution of the form

vz = i

ρm

dp1

dz
Hν, (4)

where Hν is a complex viscous ‘loss’ function, unique to the specific channel geometry (e.g. flow inside a circu-
lar/square channel or between two parallel plates). For channels of low aspect ratio, it is straightforward to show
that both ρm and p1 are a function of z alone [17], such that the velocity profile along the channel cross section is
dictated solely by the function Hν .

In what follows, we derive a new loss function for flow past spherical droplets within an aerosol. We consider a
sparse aerosol of droplets satisfying R � d, where R is the droplet radius and d the distance between neighbouring
droplets, namely that droplets are very small compared with the distance between them. While the spatial distribution
of droplets in an aerosol is generally random, we make the assumption that for R � d the flow around any of
the droplets is not affected by the presence of neighbouring droplets. Under this assumption the aerosol may be
viewed as a periodic structure of droplets, for which the flow field over a single representative droplet may be used
to deduce the flow field in the entire ensemble. Following this approach we separate the flow into two disparate
scales: the ensemble (macro) scale, in which the aerosol is treated as a set of ‘channels’ through which the gas
flows, and the droplet (micro) scale that makes a single elementary unit in the periodic formation. At the ensemble
scale the wave propagates through an array of droplets that induce viscous losses, therefore the velocity is assumed
to obey (4) with a function Hν derived using the flow field at the single-droplet scale. In the original derivation of
(3), ω represents the fundamental (first-mode) resonant frequency of the system. However, here we must distinct
between two configurations: in case an aerosol is introduced into a resonator, for example to replace a stack, ω will
denote the resonant frequency; if a stand-alone aerosol is considered, the unbounded domain does not allow for
resonance conditions to develop, and the solution (4) is employed in the form of a normal mode analysis, where
all frequencies can co-exist assuming they do not interact prior to the instability. ΔT then denotes the temperature
difference imposed on the aerosol that would trigger the instability for each frequency separately.

The flow field around a single droplet is obtained through a solution to the momentum equations in spherical
coordinates (see Fig. 1b for the single-droplet coordinate system). We employ the solution of Lamb [27] to the
linearised vorticity equation for flow over an oscillating sphere, in which a no-slip boundary condition on the sphere
surface is considered. Internal flow within the sphere—a droplet in our case—can affect the liquid velocity relative
to the droplet motion, and thus induce velocity slip at the droplet–gas interface. Considering a tangential-stress
balance at the interface, however, suggests that such effect is marginal due to the large dynamic-viscosity ratio
between liquid water and air (≈ 50). On this ground, we neglect the internal circulation within the droplet and
follow Lamb [27] who derived, through a separation of variables, a solution in terms of the streamfunction

ψ (r, θ, t) = f (r) sin2 θ exp (it) , (5)

where

f (r) = 1

2
r2 − H

(
τ̂ν

)

2τ̂ 2
ν

1

r
+ 3

2τ̂ν

(
1 + 1

τ̂νr

)
exp

[
τ̂ν (1 − r)

]
(6)

with

H (ξ) := 3 + 3ξ + ξ2. (7)

All quantities are non-dimensional, employing the original scaling of Lamb [27]

r = R−1r̄ , t = ωt̄, ψ = λ−1ω−1R−2ψ̄, v = λ−1ω−1v̄, (8)

save only the reference velocityU∞ which is here replaced by λω. The flow is assumed axisymmetric with respect to
0 ≤ φ ≤ 2π and τ̂ is defined with R as the length scale. The streamfunction is defined such that the incompressible
continuity equation is automatically satisfied
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vr = 1

r2 sin θ

∂ψ

∂θ
, (9)

vθ = − 1

r sin θ

∂ψ

∂r
, (10)

and the oscillating velocity is, simply,

vz (r, θ) = cos θvr − sin θvθ . (11)

The non-dimensional pressure field may be recovered by considering the time-harmonic, linearised radial momen-
tum equation which, using the scaling introduced in (2), is

∂p1

∂r
= − i

τ̂ 2
ν

R

λ
ρm

[
τ̂ 2
ν vr + ∇2vr − 2

r2

(
vr + ∂vθ

∂θ
+ vθ cot θ

)]
, (12)

where

∇2 = 1

r2

∂

∂r

(
r2 ∂

∂r

)
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
. (13)

In order to derive an expression for the axial pressure derivative we integrate (12) with respect to r using (9) and
(10), transform coordinates r, θ → x, y, z, take a derivative with respect to z and transform the coordinates back
x, y, z → r, θ to finally obtain

∂p1

∂z
= − i

τ̂ 2
ν

ρm

[

1 − H
(
τ̂ν

)

2τ̂ 2
ν r

3

(
1 − 3 cos2 θ

)]

. (14)

Note that the factor R/λ in (12) is eliminated through the (dimensional) integration in r̄ = Rr and derivative in
z̄ = λz. Under the assumption that neighbouring droplets do not affect the flow field over a single droplet, we use
the expressions in (11) and (14) to rewrite (4) as

Hν = − iρmvz

dp1/dz

= 4τ̂ 2
ν r

3 − H
(
τ̂ν

)
(1 + 3 cos 2θ)

4τ̂ 2
ν r

3 + H
(
τ̂ν

)
(1 + 3 cos 2θ)

(

1 − exp
[
τ̂ν (1 − r)

] 4τ̂ 2
ν r

2 − H
(
τ̂νr
)
(1 + 3 cos 2θ)

4τ̂ 2
ν r

3 − H
(
τ̂ν

)
(1 + 3 cos 2θ)

)

. (15)

The underlying assumption here is that the ensemble-scale pressure oscillations are a function of z alone, such that
any local dependency of the pressure near the droplet on r, θ may be incorporated into the viscous loss function Hν .

A similar process can be applied to the linearised energy and mass conservation equations, deriving Hα and
HD , the loss functions for conductive and diffusive relaxation between the droplets and gas. These functions are
expected to recover a result identical to (15), with changes reflected through the appropriate transport coefficient
(the subscripts α and D for thermal and mass diffusion, respectively). Consequently, we follow Swift and Keolian
[29] who derived a loss function for flow through a pin array of solid material, in which only the viscous loss
function was derived explicitly and its form was directly applied for the thermal relaxation loss function Hα , and
apply the form of (15) to the respective loss functions Hα and HD .

3.2 Wave equation and spatial averaging

One-dimensional models for wave propagation are typically employed to describe acoustic instability inside narrow
channels of different geometries. The thermoacoustic instability, however, is driven by the interaction between the
oscillating gas and the channel wall, through heat and mass transfer perpendicular to the wave propagation direction,
and hence the equations are inherently two (or three) dimensional. Retaining a one-dimensional model is achieved
through spatial averaging over the channel cross section to obtain an ordinary differential equation (ODE) for the
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pressure oscillations in the channel, commonly referred to as the acoustic wave equation. Offner et al. [17] derived
such a wave equation for a binary gas mixture containing one ‘reactive’ component that exchanges mass with the
boundary, thus incorporating mass transfer as the main mechanism for triggering the instability. For the simple case
of mass transfer through evaporation/condensation this dimensionless equation, using the scaling in (2), reads

− d

dz

(
1

Φu

dp1

dz

)
+ ΦT

dp1

dz
+ Φp p1 = 0, (16)

with

Φu = − iρm
Fν

, (17)

Φp = − i

pm

[
1 − γ − 1

γ
Fα + Cm

1 − Cm
(1 − FD)

]
, (18)

ΦT = − i

ρm

[
Fα − Fν

1 − Pr

1

Tm

dTm
dz

+ FD − Fν

1 − Sc

1

1 − Cm

dCm

dz

]
, (19)

where C is the concentration of the volatile component in the gas mixture, in terms of the molar fraction, and

Fn
(
τ̂n
) = 1

A

∫
Hn dA, n = ν, α, D, (20)

with A denoting the cross-sectional area of the channel. The functions in (20) represent spatially-averaged losses
across the channel cross section, and are the only quantities in (16) that hold information on the channel geometry.

In the current analysis, an aerosol is modelled as a set of channels for which the loss function (15) was derived.
The heat and mass transfer occurs between the droplets and the surrounding gas. In order to employ (16) for stability
analysis calculations, the spatially-averaged loss functions must be derived; the spherical coordinates impose a new
definition,

Fn
(
τ̂n, Υ

) ≡ 1

V

∫
Hn dV = 1

4π/3
(
Υ 3 − 1

)

2π∫

0

dφ

π∫

0

dθ

˛∫

1

r2 sin θHn dr, (21)

in which Υ = R∞/R marks the ratio between the upper limit of integration and the droplet radius. In practical
terms, Υ represents the approximate distance between neighbouring droplets in the aerosol. The integrals in both
φ and θ in (21) may be evaluated analytically, to obtain

F
(
τ̂ , Υ

) = 3

Υ 3 − 1

Υ∫

1

{

−r2

(

1 − exp
[
τ̂ (1 − r)

] H
(
τ̂r
)

H
(
τ̂
)

)

+
√

3τ̂ 2r4
(

2r − exp
[
τ̂ (1 − r)

] [
1 + r

H(τ̂r)
H(τ̂)

])

6
√
H
(
τ̂
) [

2τ̂ 2r3 − H
(
τ̂
)]

×
⎡

⎣π − 2 arctan

⎛

⎝ τ̂ 2r3 − 2H
(
τ̂
)

√
3H

(
τ̂
) [

2τ̂ 2r3 − H
(
τ̂
)]

⎞

⎠

⎤

⎦

⎫
⎬

⎭
dr, (22)

where the subscript ‘n’ is omitted hereinafter, since τν, τα and τD only differ by the constants Pr, Sc = O (1), the
Prandtl and Schmidt numbers, respectively.
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4 The complex loss function

The new result (22) represents a ‘loss’ function for transport within an aerosol of spherical droplets. Unlike equivalent
loss functions for different geometries (flow in a pipe of circular/square cross section, or between two parallel plates),
collectively defined in (20) as a function of a single parameter—τ̂—the present derivation led to a function of two
independent parameters, τ̂ and Υ . This arises from the spherical geometry, as the droplet radius R is used to define
τ̂ while the integration domain remains independent. In what follows, we consider the leading mechanisms affecting
the droplet motion, which subsequently determine the parameter range for which (22) is valid.

4.1 Gravity

Droplets suspended in a gas fall under the influence of gravity, at a rate dictated by the balance between their weight
and the drag force acting upon them due to their motion. For small droplets, satisfying Re � 1, where Re = UR/ν

is the Reynolds number, Stoke’s drag is invoked to describe the droplet dynamics, leading to a droplet terminal
velocity

vt = 2 (ϑ − 1) gR2

9ν
, (23)

where g is the gravitational acceleration and ϑ = ρd/ρg is the ratio between the droplet and gas densities. For the
majority of aerosols, ϑ � 1, such that ϑ − 1 ≈ ϑ may be substituted (ϑ ≈ 103 for water droplets suspended in
atmospheric air). We define a gravitational time scale, tg = R/vt , as the time over which a droplet covers a distance
R. For the acoustic instability to be triggered, a droplet should not undergo substantial displacement in the direction
of the temperature gradient, ∇T , during an oscillation cycle. Accordingly, we define a ratio between the oscillation
and gravitational time scales,

W = tω
tg/ cos Θ

= 2ϑgR cos Θ

9νω
, (24)

where 0 ≤ Θ ≤ π/2 marks the misalignment between the directions of g and ∇T , and we further demand that
W � 1. For water droplets in air with cos Θ = 1, we have W ≈ 108R/ω � 1, revealing that Rω−1 must be very
small in order to allow for oscillations to be spontaneously triggered, given that Θ �= π/2. This condition may be
satisfied by considering ultrasonic frequencies (ω � 105 s−1), however, such oscillations are unlikely to affect the
aerosol even if triggered, and are therefore of less interest. For lower frequencies, Rω−1 � 1 is obtained for τ � 1,
since τ ∝ Rω1/2.

4.2 Droplet entrainment

Equation (22) is derived assuming that the droplet is immobilised, however, droplets can become entrained in the
air that surrounds them. To account for this entrainment, we employ the result of Song et al. [30], who derived a
simple expression for droplet entrainment,

η = 1

1 + 2ϑ
9 τ̂ 2

ν

, (25)

in which η → 1 and η → 0 denote complete and no entrainment, respectively. With entrainment, the gas velocity
over a droplet is taken as the gas–droplet relative velocity, and hence a factor 1 − η multiplies vz in the original
definition (15) leading to the derivation of the loss function, F . Consequently, F is modified so as to incorporate
the droplet entrainment, viz.

F
(
τ̂ , Υ

) = E
(
τ̂
)
F
(
τ̂ , Υ

)
, (26)
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where

E
(
τ̂
) = 2ϑτ̂ 2

9 + 2ϑτ̂ 2 . (27)

As expected, smaller droplets are more entrained with the gas, leading to vanishingly small F for τ < 10−3.
Consequently, we constrain our range of interest for τ to moderately small values, for which droplets are not fully
entrained with the air all the while not being sorely affected by gravity.

4.3 Analytic approximation

In order to simplify (22), we note that the geometry of flow over a single sphere resembles that of flow over a
flat plate, with the added complexity of surface curvature. The loss function for flow over a flat plate is simply
F = 1 − τ̂−1 [25], clearly revealing that the function is valid for τ ≥ O (1), since smaller values correspond
to narrow channels, where the effect of the opposite plate (in parallel plates geometry) cannot be neglected. To
determine an equivalent range for the validity of (22), we define a new non-dimensional number

T = τΥ = R∞ (ω/n)1/2 , n = ν, α, D. (28)

The droplet radius cancels in the multiplication τΥ , and T resembles the definition of τ in a long channel, with R∞
representing the dimensional length scale of the ‘channel’ between neighbouring droplets. It is, then, straightforward
to set T ≥ O (1) as the condition for which (22) is valid. Accordingly, we rewrite (26) using (22) and make the
substitution of variables ζ̂ = τ̂r , to obtain

F
(
τ̂ , T̂

) = 3E
(
ϑ1/2τ̂

)

T̂ 3 − τ̂ 3

T̂∫

τ̂

{
iζ̂ 2

⎛

⎝1 − exp
[
τ̂ − ζ̂

] H
(
ζ̂
)

H
(
τ̂
)

⎞

⎠

+

√
3ζ̂ 5

(

2 − exp
[
τ̂ − ζ̂

] [
τ̂

ζ̂
+ H

(
ζ̂
)

H(τ̂)

])

6τ̂ 1/2

√
H
(
τ̂
) [

2ζ̂ 3 − τ̂H
(
τ̂
)]

×

⎡

⎢
⎢
⎣π − 2 arctan

⎛

⎜
⎜
⎝

ζ̂ 3 − 2τ̂H
(
τ̂
)

τ̂ 1/2

√
3H

(
τ̂
) [

2ζ̂ 3 − τ̂H
(
τ̂
)]

⎞

⎟
⎟
⎠

⎤

⎥
⎥
⎦

}
dζ̂ , (29)

where a hat sign, as before, marks a multiplication by i1/2.
Next, we simplify (29) by considering the asymptotic limit τ � 1 and expanding the integrand as a series near

τ̂ = 0. The entrainment factor E
(
ϑ1/2τ̂

)
is deliberately excluded from the expansion since ϑ1/2 � 1, and the limit

τ → 0 necessitates that F → 0. We then split the integral into two distinct regions: τ̂ → σ̂ and σ̂ → T̂ , where σ̂

marks the lowest value, for which τ̂ � ζ̂ in the integrand. Since T ≥ O (1) andτ � 1, we concentrate on the case
τ � σ � 1, in which the contribution of the region τ̂ → σ̂ , where the series expansion in τ̂ is not valid, may be
neglected. Setting σ̂ = 0 for simplicity, we have

F
(
τ̂ , T̂

) = 3E
(
ϑ1/2τ̂

)

T̂ 3

T̂∫

0

{
ζ̂ 2 − τ̂ ζ̂ exp

(
−ζ̂
)}

dζ̂ + O
(
τ 2
)

, (30)

which is easily integrated to finally obtain

F
(
τ̂ , T̂

) = E
(
ϑ1/2τ̂

)(

1 − 3τ̂

[
1 − (1 + T̂

)
exp

(−T̂
)

T̂ 3

]

+ O
(
τ 2
))

. (31)
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Excluding the entrainment factor, the leading order in (31), F = 1, is the result for a lossless channel, to which F
physically converges as droplets become smaller and resemble points, i.e. as τ (∝ R) → 0. In practice, however, as
droplets get smaller they become nearly fully entrained with the air, making a thermoacoustic instability unlikely
to be triggered.

Figure 2 displays the real and imaginary components of the aerosol loss function, evaluated both numerically and
analytically through (29) and (31), respectively. In Figs. 2a and 2 b, we sketched the real and imaginary components
of F as a function of T for representative values of τ satisfying τ � 1. As clearly seen in (31), the O (τ ) correction
rapidly vanishes as T is increased, resulting inF → E

(
τ̂
)
, providing the values to which the curves saturate at large

T . Physically, this represents a sparse aerosol, for which droplet entrainment alone initiates acoustic attenuation
in the fluid surrounding the droplet. As τ is increased, droplets are less entrained and the curves saturate towards
F → 1 + 0i, representative of all narrow-channel geometries for τ → ∞. The analytic approximation (31) closely
follows the numerical calculation for T � 2. Recalling that the current derivation is valid for T � O (1), (31) may
be used to genuinely describe the aerosol loss function throughout much of the range for τ, T . In Fig. 2c and d, we
re-plotted the aerosol curves for τ = 0.3 (blue), alongside curves for other narrow-channel geometries—namely
flow over a single plate (red, dashed) and between two parallel plates (red, solid)—sketched against their single
parameter, τ . The single plate loss function closely approximates that for parallel plates at large τ , i.e. for widely
separated plates. The shaded area marks the range for which the relative error between these functions is less than
5%— τ > 2.3. Recasting this result as the appropriate range for T in the aerosol loss function proposes a reasonable
choice: results below this value drop to negative values (not seen in Fig. 2c, d)—non-physical results marking a
flip in the direction of ∇T—while results above it follow the parallel plates curve trend, with the obvious change
of saturating to a non-zero constant value due to droplet entrainment. Within this range, the analytic approximation
(31) may be used to accurately describe F (τ, T ) with a relative error not exceeding 6% for τ ≤ 0.3.

The methodology applied to derive (29) shares very little in common with the derivation of F (τ ) for different
channel geometries, in which the unsteady Stokes equation is explicitly solved [25]. The agreement between the
curves’ trends in Fig. 2c–d is, then, encouraging and suggests that the use of a single droplet as an elementary unit
in a periodic array of droplets results in a loss function for the entire array, which shares features with functions
that are regularly used to accurately model physical systems.

5 Stability analysis

In the current analysis, we seek the critical temperature difference, ΔT . The resulting neutral stability curve repre-
sents the point where a small pressure perturbation within the aerosol neither decays nor grows. The methodology
used to solve for ΔT is thoroughly described in Offner et al. [17], and is therefore only briefly discussed here.
Assuming that the gas within the aerosol is saturated with vapour, we use the Clausius–Clapeyron relation to
express the reactive gas mole fraction as a function of the gas mixture temperature to obtain

Cm = exp

[
− lh
Rg

(
1

Tm
− 1

Tb

)]
, (32)

dCm

dz
= dCm

dTm

dTm
dz

= lh
RgTm

Cm

Tm
∇T, (33)

where lh [J/mol] and Tb are the reactive gas latent heat of vaporisation and boiling temperature, respectively, and
Rg is the universal gas constant. For the purpose of the derivation to follow, we rewrite the wave equation (16) as a
set of two first-order ODEs
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Fig. 2 Real (a) and imaginary (b) components of the complex loss function for oscillating flow within an aerosol, calculated both
numerically (solid curves) through (29) as well as analytically (dashed curves) via (31). All curves reach a constant value for large T ,
determined by the entrainment factor E

(
τ̂
) = 2ϑτ̂ 2/

(
9 + 2ϑτ̂ 2

)
. Comparison between the real (c) and imaginary (d) components of

the aerosol loss function with τ = 0.3 (blue curves) with that of flow over a single plate (red, dashed curves), sketched against its single
parameter, τ . The single plate function closely approximates that of flow between two parallel plates (red, solid curves) for large τ ; the
shaded area marks the τ range for which the relative error between these functions is less than 5%— τ > 2.3. Applying this result
for the range of T in the aerosol loss function yields a sensible range, for which the aerosol function closely resembles that of other
geometries

dp1

dz
= Φuu1, (34)

du1

dz
= Φp p1 + ΦT∇Tu1, (35)

where u1 = V−1
∫

vz dV is the volume-averaged axial velocity, Φu, Φp are defined in (17–18), respectively, and
ΦT is redefined using (33) to exclude ∇T

ΦT = − 1

TmFν

(
Fα − Fν

1 − Pr
+ FD − Fν

1 − Sc

Cm

1 − Cm

lh
RgTm

)
. (36)

We follow previous work, assuming the axial temperature distribution before an instability is triggered follows a
linear trend, i.e. the solution to a one-dimensional, steady conduction equation (see, e.g. [17,31–33]). The temper-
ature gradient imposed on the aerosol is then simply a constant, ∇T = ΔT/L , and (34–35) are a set of linear,
homogeneous ODEs that form an eigen value problem for the system resonant frequency, ω. We fix the aerosol cold
temperature at the left end, Tm (z = 0) = Tc, and apply boundary conditions according to the system geometry:
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no penetration conditions, i.e. u1 = 0, at closed ends for straight tubes (standing wave resonators); continuation
on p1, u1 for toroidal tubes (travelling wave resonators). Since the derived aerosol loss function is valid only for
T � O (1), the instability is unlikely to be triggered in travelling wave configurations, for which T � 1 is
favourable [25]. Consequently, we limit the current analysis to a standing wave configuration, namely a straight
tube with closed ends. The temperature is assumed to be constant outside the aerosol (Tc to the left of the aerosol
and Tc + ΔT to the right of it). Newton’s method is used to solve the boundary value problem (BVP) and recover
ω and ΔT .

6 Results and discussion

We conduct a parametric investigation of the critical temperature difference, ΔT , across an aerosol as a function
of several key parameters. The value of ΔT ≤ ΔTmax = Tb − Tc is bounded, since the aerosol temperature cannot
exceed the droplet boiling temperature Tb, nor fall below Tc, which is given as a boundary condition at z = 0 [17].
Throughout the forthcoming calculations, we consider a closed, straight tube with diameter 1 cm and length 20 cm,
in which an aerosol constitutes a short segment of 1 cm, located 16 cm from the tube’s left end. The tube’s length,
directly affecting the resonant frequency, ω, was chosen such that the condition W (∝ R/ω) � 1 is satisfied (see
Sect. 4.1) for realisable droplet radii—R = 1 − 50 μm. The aerosol is composed of water droplets suspended in an
air–water vapour gas mixture, where the mean pressure is pm = 1 bar.

6.1 Aerosol characteristics

We begin by examining the effect of the aerosol loss function parameters on the critical temperature difference. For
convenience, we calculated stability curves for several aerosol sparseness values, Υ , as a function of the aerosol
Womersley number, T , presented in Fig. 3a. All curves display a minimum value, ΔTmin, at unique T values, where
an increase in Υ lowers this minimum until, for Υ > 30, ΔTmin remains constant. To explain this phenomenon, we
‘artificially’ rewrite (31) as a function of three variables (rather than two), to obtain

F
(
τ̂ , Υ, T̂

) = E
(
τ̂
)
(

1 − 3

Υ

[
1 − (1 + T̂

)
exp

(−T̂
)

T̂ 2

])

, (37)

recalling that T̂ /τ̂ = Υ . In this form, it is straightforward how F → E
(
τ̂
)

as Υ is increased. At small Υ , Stokes’
drag affects the air flow; as the aerosol becomes sparser, this effect diminishes until, for Υ � 50, it becomes
negligible and ΔTmin remains constant. Physically, this implies that an instability is equally likely to be triggered
in aerosols of varying sparseness (Υ > 50), given that τ is maintained constant. For better illustration, we have
redrawn the curves in Fig. 3b as a function of τ alone, showing how these converge to a single curve at large Υ .
The τ range for which an instability may be triggered is greatly confined, reflecting the constraints of entrainment,
which drastically suppresses the instability at small τ , and that of gravity, which restricts τ to moderately small
values for a given ω (see Sects. 4.1 and 4.2 for a detailed explanation).

6.2 Aerosol temperature

The aerosol cold-side temperature Tc = Tm (z = 0) is a prescribed boundary condition that directly affects the
reactive gas concentration in the mixture, Cm . This, in turn, strongly affects the phase-change heat transfer between
the droplets and gas, tending to decrease ΔT as Tc is increased. Figure 4a presents stability curves at varying Tc
for a fixed value of Υ = 50 and several representative values of τ . All curves display a monotonically decreasing
trend, demonstrating how enriching the vapour content in the gas mixture enhances mass transfer, which translates
to a lower ΔT . The minimum value for each curve reflects the results in Fig. 3b, with a minimum value at τ ≈ 0.17

123



16 Page 12 of 14 A. Offner, G. Z. Ramon

Fig. 3 a Critical temperature difference, ΔT , as a function of the aerosol ‘channel’ number, T , for representative values of aerosol
sparseness, Υ . All curves display a minimum at unique T ; curves for larger Υ (not sketched) recover the Υ = 50 curve shape, only
shifted towards larger T . The aerosol cold temperature is Tc = 300 K. b The same stability curves sketched against τ , revealing that
large Υ recovers an identical curve, regardless of the aerosol sparseness. The air volume around each droplet at large Υ is large enough
to practically eliminate the effect of Stokes drag, leaving only droplet entrainment to attenuate the acoustic wave

Fig. 4 a The temperature difference, ΔT , across an aerosol as a function of the aerosol cold-side temperature, Tc, for fixed Υ = 50
and several values of τ . All curves decrease monotonically, reflecting a decrease in ΔT as the aerosol temperature increases and mass
transfer is enhanced. b The scaled temperature difference, Δ̂T ≡ ΔT/Δ (Tb − Tc), with Tb the reactive gas boiling temperature at
mean pressure pm = 1 bar, as a function of Tc. The curves terminate before reaching Δ̂T → 1 due to droplet entrainment, unevenly
affecting the instability at varying τ (see Sect. 6.2)

for Υ > 50. From the previous work [17], the temperature difference is known to drop until ΔT → ΔTmax, where
ΔTmax ≡ Tb − Tc with Tb the boiling temperature, which the reactive gas at a constant mean pressure cannot
exceed. Here, however, the τ ≤ 0.1 curves terminate well before ΔT approaches ΔTmax. To further investigate
this, we scaled the curves by ΔTmax and plotted them in Fig. 4b. At low Tc, an increase in the aerosol temperature
dramatically decreases ΔT , outweighing the linear decrease in ΔTmax. As the temperature is further increased, these
contributions balance at Tc ≈ 50◦C, above which the curves ascend and terminate at a finite Δ̂T < 1. While each
curve is labelled with a constant τ , each label corresponds to a mean value since the resonant frequency ω—used to
define τ—is the system eigenvalue, unique to each BVP. As Tc is increased, the gas composition changes, tending to
increase the sound velocity since water vapour is lighter than air. Consequently, ω increases and so does τ ∝ ω1/2.
This variation affects the results through the droplet entrainment factor E

(
τ̂
) = 2ϑτ̂ 2/

(
9 + 2ϑτ̂ 2

)
. For small τ ,

the variation in ω dramatically affects the entrainment and therefore the range for which the instability may be
triggered, as evident in the τ = 0.08, 0.1 curves that terminate at Tc = 23, 76◦C, respectively. At larger τ the
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curves all terminate at Tc ≈ 93◦C, however, the Δ̂T value at which they terminate increases with an increase in τ .
The variation in ω as Tc increases become less significant, allowing the curves to ascend more towards Δ̂T = 1.

7 Conclusion

Motivated by the possible implications of acoustic oscillations in aerosols, particularly to the potential enhancement
of droplet agglomeration and the use of aerosols to replace existing solid parts in thermoacoustic engines, the present
work examined the possible occurrence of acoustic instability in aerosols, triggered by an imposed temperature
gradient. Throughout the derivation, the aerosol was modelled as a periodic structure of small, mono-dispersed
droplets. The droplets were collectively viewed as a periodic grid of narrow channels, through which the gas flows.
The analytic solution to oscillatory flow over a single droplet was then employed to deduce the flow field in the
entire ensemble. Applying this methodology, a new function accounting for viscous losses in the aerosol was
derived, which was subsequently used to perform a one-dimensional, linear stability analysis identifying the critical
temperature difference that triggers the instability. Due to the spherical geometry of the droplets, the derived loss
function is dependent on two parameters (as opposed to only one—the Womersley number, τ—for other channel
geometries), and is expressed as an integral that may only be evaluated numerically. In the limit τ � 1, however,
the integral may be greatly simplified, allowing the derivation of an analytic solution. The behaviour of this new
loss function resembles that of other narrow-channel geometries that are widely used in models of thermoacoustic
systems, suggesting that the scale separation technique used in Sect. 3.1 to model the oscillatory flow within the
aerosol captures the key physics in this complex flow.

A stability analysis was conducted, in which ΔT was calculated for varying T ≡ τΥ , i.e. the Womersley number
for the ‘channel’ between neighbouring droplets (see Fig. 3a). The results revealed a self-similar behaviour for sparse
aerosols—Υ � 50—where the volume of gas subjected to Stokes’ drag becomes negligible, leaving only the effect
of droplet entrainment to attenuate the acoustic wave and induce the instability. Indeed, when plotted against τ

(Fig. 3b) all results collapse to a single curve for Υ � 50, representing the droplet entrainment dependency on a
single parameter, τ .

Effects of the aerosol temperature on the instability were examined by varying the boundary condition for the
aerosol cold temperature, Tc. This variation in temperature directly affects the gas mixture composition, expressed
as the reactive gas concentration Cm which, in turn, lowers ΔT . While the monotonically decreasing trend of
ΔT vs. Tc in Fig. 4a directly matches the results of Offner et al. [17], the curves terminate before reaching their
maximal allowed temperature difference, ΔTmax, dictated by the reactive gas boiling temperature. The seemingly
small variations in ω due to an increase in Tc prove sufficient to non-negligibly affect droplet entrainment, resulting
in suppression of the instability before ΔT → ΔTmax.

The overall results from this work suggest that triggering of acoustic instability in aerosols due to uneven heating
may be possible. Once triggered, the excited oscillations induce motion within the aerosol that can subsequently
lead to coalescence and agglomeration of droplets.
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