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Abstract

Positron emission particle tracking (PEPT) is an imaging method for the visual-
ization of fluid motion, capable of reconstructing three-dimensional trajectories
of small tracer particles suspended in nearly any medium, including fluids that
are opaque or contained within opaque vessels. The particles are labeled radio-
actively, and their positions are reconstructed from the detection of pairs of
back-to-back photons emitted by positron annihilation. Current reconstruc-
tion algorithms are heuristic and typically based on minimizing the distance
between the particles and the so-called lines of response (LoRs) joining the
detection points, while accounting for spurious LoRs generated by scattering.
Here we develop a probabilistic framework for the Bayesian inference and
uncertainty quantification of particle positions from PEPT data. We formulate
a likelihood by describing the emission of photons and their noisy detection
as a Poisson process in the space of LoRs. We derive formulas for the corres-
ponding Poisson rate in the case of cylindrical detectors, accounting for both
undetected and scattered photons. We illustrate the formulation by quantifying
the uncertainty in the reconstruction of the position of a single particle on a
circular path from data generated by state-of-the-art Monte Carlo simulations.
The results show how the observation time Af can be chosen optimally to
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balance the need for a large number of LoRs with the requirement of small
particle displacement imposed by the assumption that the particle is static over
At. We further show how this assumption can be relaxed by inferring jointly
the position and velocity of the particle, with clear benefits for the accuracy of
the reconstruction.

Keywords: positron emission particle tracking, Bayesian inference,
uncertainty quantification

(Some figures may appear in colour only in the online journal)
1. Introduction

Standard methods for fluid flow visualization, e.g. particle image velocimetry and particle
tracking velocimetry, use high-speed cameras to capture the motion of small tracer particles
that follow the fluid motion. Although widely used, these methods have two main draw-
backs: the inability to visualize opaque flows—either flows of opaque fluids or flows within
opaque environments—and a limited ability to visualize three-dimensional flows. Inspired by
the physics of positron emission tomography (PET), a standard method for diagnosis in nuc-
lear medicine, Parker et al [1] developed positron emission particle tracking (PEPT), in which
radioactively labeled particles serve as tracers of fluid flow. The radioactive decay of these
particles emits positrons that are annihilated on or near the particles, resulting in y-radiation
that is picked up by an array of sensors, allowing for the triangulation of each particle pos-
ition. Because of their high energy, the v photons penetrate even very dense media, making
it possible to visualize, for example, the flow of liquid metals [2] or of colloidal drugs in the
bloodstream [3]. The triangulation process naturally recovers the full position of the particles,
so the reconstructed trajectories are inherently three dimensional.

The fundamental idea behind the triangulation of particle positions in PEPT is simple. In
most annihilation events, the positron and electron masses emit two photons that travel in
opposite directions to conserve momentum. The emitted photons are picked up at the detection
surface (an array of small detectors, see figure 1); two photons detected within a very short time
interval are interpreted as having been generated by a single annihilation event. Such a pair
detection represents a line of response (LoR) — the straight line connecting the two detection
points—along which the particle is presumably located (red line and black dot in figure 1).
Two nearly intersecting LoRs are seemingly sufficient to determine a particle instantaneous
position with great accuracy. However, in practice, a much larger number of LoRs is required to
cope with various sources of uncertainty. These include Compton scattering [4], which leads
to outlier LoR detections (illustrated by the purple lines in figure 1), the finite size of the
detectors, which limits resolution, and positron range, that is, the small but non-zero distance
between the radioactive particle and the point of annihilation. The interested reader will find
explanations on these and other sources of uncertainty in the paper by Moses [5].

There is a rapidly growing body of work devoted to PEPT (see the recent book by Windows-
Yule et al [6] and references therein). This includes the development of a variety of methods
for the inversion of PEPT data [7—13], which are assessed and compared in the recent review
[14]. The methods proposed to date are largely heuristic, and they do not estimate the error
made on the recovered particle positions. The main aim of this paper is to remedy this and
propose a systematic probabilistic framework for PEPT. This makes it possible to infer the
particle positions and quantify their uncertainty using Bayesian methods [15].

We first formulate the forward problem, describing the probability of observing a set of
LoRs given the positions and activities of the particles as a Poisson process in the space of
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Figure 1. Schematic of a PEPT system: a representative positron-emitting particle
(black) is positioned inside a cylindrical array of detectors with radius R and height
H. The highlighted cells denote photon detections and the solid lines represent lines of
response (LoRs) that connect points of near-simultaneous detection. The red line repres-
ents a true back-to-back photon pair detection, indicative of the particle’s true position;
the purple line is an outlier LoR that results from a scattering event. The purple dotted
line shows the true photon paths. The LoR parameterization u = (¢1, ¢2,21,22), with
(zi, i), i = 1,2, the height and azimuthal angle detected photon i, is also shown.

LoRs and in time (section 2). We then give an expression for the corresponding rate in the case
of a cylindrical detector, the most common geometry of PET/PEPT scanners, accounting for
the detection of outlier LoRs resulting from scattering (section 3). We illustrate the benefits
of our framework by carrying out Bayesian inference for synthetic data of a particle moving
along a circular path (section 4). This provides a quantification of the uncertainty as a function
of the time interval At over which LoRs are observed, a key parameter that is determined by
trial and error in other PEPT reconstruction algorithms. We also show how knowledge of the
exact times of LoR detection can be leveraged to improve the accuracy of the inference.

2. Formulation

We consider K radioactive particles with positions X(7) = {x; (¢),...,xk (¢)}, suspended in a
fluid within the volume enclosed by an array of detectors (see figure 1 for a schematic of a
system with a cylindrical array). The particles spontaneously emit positrons at random times,
according to independent Poisson processes whose rates are the activities o = {py,...,pg}-
These activities can be taken as constant over the time Az of observation of a batch of LoRs.
Positrons released from radioactive decay are annihilated close to the particles, emitting a pair
of back-to-back photons in a random direction. The photons are subsequently picked up by a
pair of detectors. The LoRs joining each pairs of detectors constitute the data from which the
particle positions X(¢) should to be retrieved. We adopt a Bayesian approach and formulate
a forward model, which gives the probability of observing a set of LoRs given the particle
positions X(#) and activities p and is translated into a probability for X(¢) and ¢ using Bayes’s
formula. The forward model is best expressed as a Poisson process in the space of LoRs.
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Figure 2. Parameterization of LoRs: the direction n of a LoR is given by the polar spher-
ical angles  and . The brown plane is normal to n and goes through the origin; its inter-
section with the hemisphere tangent to the LoR is shown as a green arc. The point on
the LoR closest to the origin (red dot) is parameterized by the two coordinates (a,ag)
in the planar frame (e, ep), with (r,eq,e,,) the standard unit vectors of spherical polar
coordinates.

2.1. Forward model

The space of lines in R? is 4-dimensional since lines can be characterized by a unit vector
n, giving their direction, and the closest point to the origin, which lies in the plane normal
to n. With the restriction n, > 0, this identifies the space of lines with the tangent bundle to
a hemisphere. We parameterize n using the standard polar spherical angles. The point on the
line closest to the origin is then conveniently represented as

a=agee,+agpey (1)

in terms of the unit vectors e, and ey of the spherical coordinate system (with e, = n, see
figure 2). In this way, a LoR L is parameterized as

L= (¢,0,a,,a0) € [0,27] x [0,7/2] x R )

There is a natural measure on that space, du say, characterized by invariance in rotation and
translation [16]. In terms of the coordinates (2), this has the simple form

dp = sinfdpdfda, dayg. 3)

The generation of LoRs given the positions and activities of K radioactive particles defines
a Poisson point process in the space of lines and in time. This has long been known in PET,
with numerous works describing LoR generation as a Poisson process (see, e.g. [17, 18]),
however in PEPT the radioactive source position is inherently time dependent. We denote by
A(L|x(), p) the rate (or intensity) of the Poisson process corresponding to the generation of
LoRs by a single particle with activity p moving along the path x(¢). Thus Adudt is the probab-
ility of finding a LoR in the volume [¢, ¢ + dy] x (6,0 4+ d0] X [a,,a, + day] X [ag,as + dag)
during a time interval [z, £ + df]. The form of A(L|x(-), p) depends on the geometry of the detect-
ors and physics of positron annihilation, scattering and other processes; we give an explicit
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form for a cylindrical detector in section 3. Note that A(L|x(), p) depends on time implicitly
through the time dependence of the particle position x. The rate of generation by K particles
is simply Z/f:l A L|xi(2), pr)-

Using the standard formula for Poisson point processes [19], we can write down the prob-
ability of observing N LoRs Ly,...,Ly attimes 0 <1 < --- < ty < At as

N K

P(LX(), 0,A1) = e MXO LT TN "X (Lyfxe(ta). pr) @)

n=1 k=1
Here £, = {(Li,t1),...,(Lw,ty)} denotes the observed LoRs and times of observation and we
have defined
K At
AXC).080 =3 [ [ A(Ls(0),p0) dat )
k=170

with the integration with respect to dy carried out over the entire space of LoRs. Note that
P(L]X(-),0,At) is properly normalized, in the sense that

0 At At At
Z/ dtl/ dt2~--/ dtN/---/P(£,|X(-),g,Az) dpy - dpy = 1. )
N=0"0 n IN—1

In most inversion algorithms, the time interval At is taken small enough that particles can
be assumed fixed (see [20], however). With this assumption, information about the times of
observations of the LoRs can be disregarded, and we can focus on the probability of observing
aset L ={Ly,...,Ly} of LoRs, irrespective of the times. This probability is obtained by integ-
rating (4) with respect to 0 < t; <, < --- < ty < At to find

(At)NefA(X,g,At) N K

i [1D -2 Lakeis i), (7)

n=1 k=1

P(L|X, 0, A1) =

where the notation emphasizes that X and x; are regarded as constant. Equation (5) also sim-
plifies to

K
A(X, 0, A1) :AtZ/)\(L|xk,pk)du. ®)
k=1

2.2. Bayesian inference

Bayes’ formula provides the means to infer a probability distribution for the particle positions
and activities from LoR data. Under the assumption of fixed particles, it takes the form

where P(X,o|L,At) is the posterior probability for the (fixed) particle positions X =
{x1,...,xk} and activities o = {p, ..., px}, P(X, 0|L, At) is the likelihood given in (7), and
P(X, o) is the prior. In the application of section 4, we take a uniform (improper) prior over
the set of physically realizable particle positions and activities, namely

1 ifx,eVandp, >0 Vk

10
0 otherwise (10)

P(X,0) = {
where V is the volume enclosed by the detectors.
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The assumption of fixed particle positions that underlies (9) restricts the length of the obser-
vation time Ar and hence of the number of observed LoRs. Depending on the speed of the
particles, this can severely limit the accuracy of the inversion. To overcome this, we can retain
information about the times of LoR observations and carry out Bayesian inference for the
particle trajectories rather than fixed positions, using (4) as the likelihood. In practice, the tra-
jectories must be parameterized, say as x(7) = x(z,9%), where ¥ groups the parameters of the
trajectory of particle k. Bayes’ formula is then used in the form

P(9,0|L;, A1) o P(L,|9,0,A1)P(¥,0), (11

where ¥ = {¢1,...,%} and the likelihood P(L,|¥, ¢, Af) is obtained from (4) by substitut-
ing the parametric form of the trajectories. A simple parameterization can be constructed by
a Taylor expansion of the particle trajectory around the middle of the observation time. We
follow Manger et al [9] by writing

M

1 d"x
(=Y ‘

m! dem

(t—At/2)" + 0 (AMT). (12)
At/2

m=0

and use the position and its M first derivatives as parameters:
de k

%= ey —— . 13
k (xk|At/2a P A A,/z) (13)

We refer to inference of this type as high-order inference and to M as the order of the inference.
We implement the M = 1, first-order inference in section 4.4.

3. Poisson rate

We now derive the Poisson rate A(L|x, p) for a cylindrical detector configuration with radius
R and height H as depicted in figure 1. We assume that positron annihilation takes place close
enough to the radioactive particle that the photons can be assumed to travel on a line through
x. This line has a random direction, distributed uniformly and parameterized by two spherical
angles ¢’ and #’, say, with probability density

sinf’

pe’,0") = 5 (14)

The angles ' and 6’ differ from the angles ¢ and 6 attributed to the LoR because of meas-
urement errors which we now model.

3.1. Detection error

The LoRs are detected on a surface of discrete detectors, in our case a cylindrical envelope.
The line through x intersects this cylinder at two points which we parameterize as

u'= (¢1/,¢2/7Z1/,22/) € [0,27'('] X [0727‘-} X [_H/27H/2] X [_H/Z’H/2]7 (15)

where ¢, and zj, are the azimuthal angles and heights of the two points (see figure 1
for illustration of this parameterization). Measurement uncertainty introduces a deviation
between the detected coordinates u of these intersections and the exact intersection u’. As
a result, the coordinates L = (¢,6,a,,ay) of the observed LoR differ from the coordinates
L' = (¢',0’,x,1,x9/) of the line followed by the photons. The uncertainty associated with the
finite size of the detectors implies that the intersection parameters u of the observed LoR are

6
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distributed uniformly over the area of the two detectors intersected by the true LoR. To avoid
discontinuous distribution and to group all measurement errors in a single, simple model, we
replace this uniform distribution by a normal distribution: we assume that u is normally dis-
tributed about u’ according to

S/ 0 0 0
0 /R 0 0
0 0 g 0
0 0 0 g

ull’ ~N(u',C), where C= (16)

Here g? is the variance of the detected heights z; and z,; assuming that the uncertainty about
the true LoR is isotropic, it follows that the variance in ¢, ¢, is g2/R?. In practice, we fix g to
ensure the Gaussian distribution does not strongly deviate from a top hat function; specifically,
we take g such that the difference between integrating the top hat and Gaussian distributions
over a single detector is minimized.

There is a one-to-one map between the coordinates of LoRs and the coordinates u of the
detected points which we denote by u = F (L) (see appendix A for its explicit form). In the
linear approximation, the normal distribution (16) implies that L is also normal, specifically

LIL' ~N(L'%), where ¥ =[VF(L)] 'C[VF(L)". (17)

We deduce the probability that a LoR L is detected given that a positron is annihilated at
x by marginalizing over the angles ¢’ and 6’ of L’ distributed according to (14). Using that
g/R < 1, we can approximate the Gaussian in ¢’ and 6’ by §(¢’ — ¢)d(6’ — 6) to obtain this
probability as
sinf
27 |det 5,2

where X35 is the lower-right 2 x 2 block of ., given explicitly in (A.10), and

A ay, —X
a=()=(u)

Finally, the intensity of the Poisson process in the space of LoRs and time is obtained as

exp(—A'S;TA)2), (18)

A(L|x,p) = exp (—A'S;TA/2) x(L € D(xy)), (20)

.
27 |det '/
with the factor sin § absorbed in the volume element dy in (3). The characteristic function x(-)
in (20) ensures that \ is non-zero only if L belongs to the set D(x;) of LoRs through x; that
intersect the detector.

A particularly simple expression for A is obtained under the assumption a,,a9 < R valid
when the particle is located well away from the detector, as is the case for experiments carried
out in small vessels. Equation (20) is then well approximated by setting a, = ay = 0 to obtain

p AL LA
AML|x,p)= —— - | —= LeD ) 21
(Lx,p) 7rg251n96Xp g +gzsin20 X( (i) @
3.2. Outliers

Statistically, a proportion of the photons emitted from annihilation events are scattered, result-
ing in outlier LoR detections (see figure 1 for a visualization of such detection). We account
for these outliers by adding to the Poisson process describing the generation of LoRs by K

7
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particles a component independent of the particle positions and activities. This captures the
fact that scattering leads to the identification of spurious LoRs whose distribution is not dir-
ectly related to the particle positions. For simplicity, we assume this distribution to be uniform
over the entire space of LoRs. We therefore re-write the probability density (7) for the detected
LoRs as

At Ne—A(X,Q,At) N K
P(E‘X,Q,AI)Z%H %+ZA(Ln|xkapk) ’ (22)
: n=1 0 k=1
where
K
A(ngaAt):At <p0+2/ A(lekapk) dM) ) (23)
k=1"D

in which D is the set of all the possible LoRs for a specific detector configuration, py is the
rate of scattered events, which is treated as independent of the activities py for simplicity, and

o5 = / dp (24)
D

is the outlier variance. Note that the activities p; now stand for the rate of generation of ‘true’
LoRs, as opposed to outlier LoR resulting from scattering events. The total activity from all
particles is Zf:o Pk

The evaluation of the integrals (23) and (24) defining A and o requires to determine the
sets D and D(xy) of, respectively, all LoRs intersecting the detectors twice and LoRs through
x; intersecting the detectors twice. We detail in appendices B and C the parameterization of
these sets and the computation of the integrals. The outlier variance is found as

HR
05:7;7(25“7\/452“), 25)
where = R/H. This is proportional to the detecting surface area A; =27 RH. In the limit
B — 0 corresponding to a cylindrical detector that resembles a long tube, all LoRs are detected
and 03 — A,4/8. In the limit 3 — oo, corresponding to a detecting surface that resembles a ring
in which no true LoRs are detected, 0'% — 0 as expected. The rate A is approximated as

K
A(X,0,A1) = At (Po +Y mG (xk)> ; (26)

k=1

assuming that the distance between the particles and the detectors is much larger than g. Since
g < R, this assumption holds for realistic PEPT setups. Here, G (x) is a solid angle subtended
by the cylindrical detector from x; divided by 4; it can be written as

1 2w w/2 1 2
Gx) = —/ d@/ sinfdf = —/ €08 Onin (x, ) dop, 27
27 J O 27 J,
where 0.y, given explicitly in (C.2), is the minimum angle required for the LoR to intersect
the cylindrical detector twice.

According to (26), prG(xi) can be interpreted as an ‘effective’ activity for particle k that
accounts for failure of detection of LoRs caused by detector geometry through the factor 0 <
G(xx) < 1. Figure 3 shows G as a function of the cylindrical coordinates (r, z) of the particle (G
is independent of the azimuthal angle by symmetry) for three aspect ratios 8 = R/H. As (3 is
increased G trivially decreases throughout the domain; the maximum value is always obtained

8
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8 =1/4 8=1/2 =1

0.8

e

H
L
2R

0.2
0

Figure 3. Function G (r,z), computed numerically from (C.5) for the aspect ratio 8 =
R/H =1/4 (left), 1/2 (center), and 1 (right). The function quantifies the reduction in
particle detectability depending on its position relative to the detector.

at the origin » = z = 0. We derive asymptotic approximations for G at small and large 5 in
appendix C.

4. Application

To demonstrate the effectiveness of our framework, we carry out the Bayesian inference of the
instantaneous position and activity in a simulation of a single radioactive particle moving along
acircle. The circle is concentric with the cylindrical detector surface so that, by symmetry, G (x)
is constant along the particle trajectory. Extending the simulation and Bayesian inference to
multiple particles is straightforward in principle; however, the corresponding increase in the
number of inferred parameters complicates the analysis and significantly increases the com-
putational cost. Considering an upper limit of a few hundred parameters in Bayesian inference
[21], a realistic limit on the number of particles and/or the inference order can be easily
estimated.

4.1. Simulations

We carry out our analysis on synthetic data produced by GATE [22], a unique software for
positron emission simulations. This has the benefit of providing the exact particle position
as ground truth, thus enabling the exact measurement of the inference error. We consider a
cylindrical detector surface with R =200 and H = 230 mm (8 = R/H = 0.87), composed of
identical 4 x 4 mm detector elements. The rotating, positron-emitting particle is suspended in
water, and its ‘corrected’ activity, that is accounting for the effect of detector deadtime which
is not represented explicitly in the present work, is p = 5 - 10* emissions/s. LoRs are recorded
over a period of one second, providing ample data for the inference. We carry out simulations in
four different conditions with varying circle radii and rotation frequencies: » =50 mm at f = 1
and 2 Hz, and r=100 mm at f =0.5 and 1 Hz. This yields two distinct particle velocities
27fr~ 0.3 and 0.6 m s~!, each repeated twice at varying acceleration 472f2r.

9
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4.2. Data analysis

We employ a standard Metropolis—Hastings Monte Carlo Markov Chain (MCMC) algorithm
[23] to sample the posterior distribution for the particle position x and activities pg and p;. The
likelihood and prior are those given in (22), with A in (20), and (10). For the current setup with
4 x 4 mm? detectors, the detecting error variance in (20) gives g = 2.43 mm.

The MCMC algorithm produces samples from the posterior distribution as a sequence of
(statistically dependent) sets of inferred parameters. This sequence is constructed iteratively,
with a new set of parameters obtained by proposing a random change to a single randomly
chosen parameter, then accepting or rejecting the change depending on a likelihood ratio [21].
We use Gaussians as proposal density functions for the difference between each old and new
parameter. We increase/decrease the variance of these Gaussians by a factor of two if 40 con-
secutive steps were accepted/rejected, which resulted in an averaged acceptance rate of 0.26.
The initial values of the Gaussian proposal density are set as follows: the position variance is
initially set to g; the activity standard deviation is initially taken as 5% of the particle activity.
We use 10° steps to infer the position and activity at each run. We start each MCMC sampling
with po = p; = p/2 (with p the prescribed particle activity); to speed up the computation, we
start from the exact particle position thus not requiring a burn-in period for the MCMC.

For each pair of values of the radius r and frequency f of the particle trajectory, we infer the
position and activity of the particle at ten equally spaced times #; using the LoRs collected in
the time interval t; — A¢/2 < t; < t; + At/2. The statistics of each set of 10 MCMC samplings
makes it possible to characterize the variability of the inference process that arises from the
randomness of the positron emission. Our main focus is on the dependence of the accuracy of
the inference on the choice of the observation interval Az. We therefore run the entire MCMC
computation for a range of values of At and compare the results.

4.3. Results

We first show the results of a single MCMC sampling, carried out for a particle rotating with
frequency f = 1 Hz at a radius r = 50 mm, resulting in the tangential velocity v = 27 fr ~
0.3 m s~!. The time interval is chosen as A¢ = 10 ms which yields approximately 250 detected
LoRs.

In figure 4 we show two-dimensional histograms of the posterior pdf for the particle position
in the (x,y,0) horizontal (a) and (x, —3.56,z) vertical (b) planes. (the particle true position at
the midst of the time interval is x = (49.87,—3.56,0)) The results illustrate the localization of
the posterior defined by (22), with nearly the entire pdf supported in a 2 x 2 mm? area in both
the horizontal and vertical. To quantify the uncertainty in the inference of the particle position
more systematically, we estimate a covariance matrix for the particle position from the MCMC
samples. We use its three eigenvalues, .%; say, to compute the metric

3 1/3
s=TRs <H vz) : (28)
i=1

where R3 = 2.79, such that s is the radius of a sphere that marks the 95% confidence level for
the Gaussian distribution with the estimated covariance. (R is the three-dimensional equival-
ent of the more famous R = 1.96 that gives the 95% confidence interval for a one-dimensional
Gaussian distribution.) The pdf in figure 4 has s = 0.79 mm, five times smaller than the detector
side of 4 mm.
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50
x [mm] x [mm]

51 49 50 51

(a) (b)

Figure 4. Posterior pdf for the instantaneous position of a particle moving at v =
0.3 m s~ ! estimated by MCMC sampling using (22) with At = 10 ms. The figures show
conditional pdfs in the (a) horizontal plane (x,y,0), and (b) vertical plane (x, —3.56,z).
The majority of steps in the chain are enclosed within a 2 mm edge cube, demonstrat-
ing the localization of the PDF. For reference, the true position at the midst of the time
interval is x = (49.87,—3.56,0) mm.

Next, we run multiple MCMCs with increasing At in order to assess the trade-off between
(1) the reduction in uncertainty associated with the larger number of LoRs, and (ii) the increase
in uncertainty caused by the particle displacement during At. Indeed, in the absence of motion,
we expect s to decrease as N~'/2 ~ (pAr)~!/2, but the particle displacement introduces an
error in the model underpinning (22) that increases with Az. One may wonder why the activ-
ity p is not increased to alleviate the uncertainty in the moving particle position. Increasing p
provides more data over the same At and hence monotonically decreases the uncertainty. In
fact, p may be sufficiently increased such that the particles are quasi-static over Az, in which
case s oc p~'/2. However, in PEPT, as opposed to PET, activity cannot be increased by simply
introducing more radioactive material with the same activity density. Here each particle is
radiolabeled separately, and the requirement that particles remain small so that they are easily
suspended in fluid makes it challenging to increase each particle activity. We therefore ana-
lyze particles with fixed activity, rotating with the two tangential velocities 0.3 and 0.6 m s~!
obtained by changing either the frequency or radius of the circular trajectory. In this way, we
can examine the effect of varying the acceleration while maintaining a constant velocity. The
results are shown in figures 5(a) for v=0.3 m s~! and 5(b) for v=0.6 m s~'. The blue curves,
with the left vertical axis, show the metric s, averaged over the ten positions of the particle,
as a function of At, with the error bars indicating the corresponding standard deviation. The
red curves, with the right vertical axis, show the absolute error |x —x,| between the average
inferred position x and the particle actual position x,. The solid and dashed curves are cal-
culations for particles rotating with » =50 and 100, respectively, corresponding to a twofold
decrease in particle acceleration. The scales in both the left and right vertical axes in figure 5
are equal for ease of comparison.

All the uncertainty curves (blue, left vertical axis) exhibit minima, reflecting the trade-off
mentioned above. As could be expected, s is smaller for v=0.3 m s~ ! than forv=0.6 m s—!

1
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Figure 5. Uncertainty metric s defined in (28) (blue curves, left axes) and error |x — x|
in the inferred instantaneous particle position (red curves, right axes) as functions of the
observation time interval At for the tangential velocities v=0.3 (a) and 0.6 m s (b).
Curves and error bars are averages and standard deviations estimated from ten exper-
iments with particles distributed uniformly along their circular trajectory. Solid and
dashed curves correspond to trajectory radii of 50 and 100 mm.

as a result of smaller particle displacements with the same rate of LoR generation, and for the
same velocity, s is smaller for the smaller acceleration. The curves are asymmetric about the
minima, with a sharp decrease, and a much milder increase (and even some further decrease
at large At for v=0.6 m s~! and r =100 mm (solid curve in figure 5(b))). The error (red,
right vertical axis), in contrast, increases unambiguously for large Az, reflecting the expec-
ted model’s inability to accurately infer the instantaneous position when the particle moves
significantly over Ar. To provide reference to our results, we also analyzed the data with the
Birmingham algorithm [1], the most commonly used method for PEPT inversion [14], and
the expectation-maximization algorithm [9]. The error |x — x| achieved by both methods (not
shown in the figures) is roughly 1 mm—typically larger than our error at small Az but smal-
ler at large At. Other inversion algorithms may be tested and compared against our results;
however, our primary aim is to quantify the uncertainty in PEPT rather than developing an
alternative algorithm. Accordingly, no attempts were made to optimize our method by, for
instance, testing various priors.

It might seem paradoxical that the uncertainty does not increase substantially with increas-
ing Ar while the error does. This is the result of our weakly constrained model of scattering:
LoRs that are inconsistent with emission by a fixed particle are attributed to the scattered
component of the likelihood, whether they arise because of scattering or because of particle
motion. This explanation is confirmed in figure 6 which shows the inferred relative activity
¥ = p1/ (po+ p1) of unscattered LoRs (blue curves, left axis). Although, the correct, physical
activity should be independent of At, the inferred value decreases, as a result of the increas-
ing misattribution of LoRs to the scattered component. One way of remedying this artifact
is to constrain the ratio p1/pg or, equivalently, ) to a physically sensible range using the
prior. Another way is to account for the particle motion in the likelihood. We adopt the latter
approach next by implementing the Taylor-expansion-based first-order inference described in
section 2.2.
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Figure 6. Inferred ratio ¢» = p1/(po + p1) of rate of unscattered LoR detection to total
LoR detections (blue curves, left axes) and error in inferred and error |x — x| in the
inferred instantaneous particle position (red curves, right axes) as functions of the obser-
vation interval At for the tangential velocities v=0.3 (a) and 0.6 m s~! (b). Curves are
averages from ten experiments, and solid and dashed curves correspond to trajectory
radii of 50 and 100 mm, as in figure 5.

4.4. First-order inference

The first-order inference relies on the form (11) of Bayes’ formula, with the time-dependent
likelihood (4) and a linear approximation to the particle trajectory, so both the particle position
and velocity in the middle of the observation interval need to be inferred. For simplicity, we
approximate x(t) =~ x(#y) = const. in the factor A in (5) and use expression (8) that depends
on positions only. The dependence on velocities is then through the rates A(L|x (1), px).

We carry out MCMC sampling for the first-order (M = 1) inference in the case r = 100 mm
and v=0.6 m s~! and compare it with the results of the position-only inference (M = 0) of
the previous section. For this comparison we use the same number of MCMC steps for M = 1
as for M =0, even though the number of parameters to estimate increases from 5 to 8. The
results are shown in figure 7(a) which shows the uncertainty metric s (blue, left axis) and the
position error (red, right axis), with the same conventions as in figure 5.

Both the M = 1 uncertainty and error curves lay below their counterparts for M = 0. This
demonstrates that inferring the instantaneous velocity increases the measurement accuracy.
Furthermore, the variance of the set of ten experiments, indicated by the error bars, is also
smaller. The difference between the errors for M =0 and 1 is marginal at Az < 20 ms, where
the particle moves less than vAr =~ 12 mm over the time interval. At larger At, however, the
M =0 error curve rises at a much steeper rate compared with the M =1 one. The increased
particle movement is then tackled better by inferring the particle trajectory over At as linear
in 7 rather than fixed. Note that we carried out the M = 1 inference for Az up to 200 ms (not
shown in figure 7(a)) to verify that s reaches a minimum value, found to be A¢ = 150 ms.

A benefit of M =1 inference over M =0, in addition to an increase accuracy, is that it
estimates directly the particle velocity, often the main quantity of interest for fluid dynamical
applications, which otherwise needs to be deduced from the positions, e.g. using finite differ-
ences. We show the uncertainty and error on the inferred particle velocity in figure 7(b). The
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Figure 7. (a) Comparison between inference of activity and position (M =0, dashed
curves) and inference of activity, position and velocity (M = 1, solid curves) for a particle
on a circular trajectory with =100 mm and v = 0.6 m s~ ': uncertainty metric s (blue
curves, left axis) and absolute error |x — x| (red curves, right axis). (b) Uncertainty s,
(blue curve, left axis) and error |[v — v.| on the velocity (red curve, right axis) inferred
for M = 1. In both (a) and (b), curves and error bars are averages and standard deviations
estimated from ten experiments with particles distributed uniformly along their circular
trajectory.

blue curve (left axis) shows the mean (over ten particle positions, as before) uncertainty met-
ric 5, defined as in (28) but using the eigenvalues of the velocity covariance matrix, with error
bars indicating the standard deviation. The red curve shows the mean error |v — v..| between
the inferred particle velocity v and the exact velocity of the circular motion v,.. The qualitative
behavior of the uncertainty and error on the inferred velocity is roughly similar to that cor-
responding to the position, though the minimum error appears for a larger At. The decrease
in inferred uncertainty as At increases is related to the misattribution of LoRs to the scattered
components, as discussed in section 4.3.

5. Conclusion

In this paper, we propose a probabilistic model for the detection of random LoRs emitted
by moving positron-emitting particles with prescribed trajectories and activities. The model
lays the foundation for the systematic quantification of uncertainty in PEPT. For simplicity, the
model bundles various sources of uncertainty into a single Gaussian error for the position of the
LoRs. It would however be straightforwardly generalized to include detailed representations of
specific uncertainty sources including positron range, discrete detectors, imperfect alignment
of the paths of the pair of photons, etc.

The generation of LoRs is described as a Poisson process in the space of LoRs, which leads
to a general formulation largely independent of the details of the PEPT device, in particular
of the detector configuration. We give an explicit formula for the Poisson rate in the case of
a cylindrical configuration. The derivation involves various geometric properties and approx-
imations. It incorporates a model of scattering that assumes that scattering occurs at a rate
independent of the position of the radioactive particles and leads to a uniform distribution of

14
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LoRs. These are major simplifications whose relaxation would introduce technical rather than
conceptual complications.

The likelihood associated with the Poisson process makes it possible to use a Bayesian
approach to infer the position and activity of the radioactive particles. This has benefits over
existing PEPT inversion methods including the systematic nature of the inference, its capab-
ility to include the model refinements mentioned above, and the quantification of uncertainty.
Furthermore, the Bayesian formulation is directly adapted to the inference of particle trajector-
ies and time-dependent activities instead of fixed positions and activities. We take advantage
of this to propose a hierarchy of Bayesian inversion procedures, based on a M-term Taylor
expansion of the particle trajectories, which requires the inference of the M first derivatives of
the positions in addition to the positions themselves. We demonstrate the potential of these pro-
cedures by carrying out a full Bayesian uncertainty quantification for a single rotating particle
using M =0 and M =1 inference. The Taylor-expansion-based procedures remain local in
time in that they are carried out independently in small time interval. It will be of interest
to develop alternative Bayesian procedures that infer entire trajectories, parameterized, for
instance, as splines (see [20]). We leave this for future work.
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Appendix A. Mapping F and covariance matrix 3

We first derive an explicit form for the mapping F between the representation

L= (p,0,a,,ap) € [0,27] x [0,7/2] x R? (A1)
of LoRs and the coordinates

u=(¢1,62,21,22) € [0,27] x [0,27] x [~H/2,H/2] x [-H/2,H/2]  (A.2)

of their two intersections with the cylindrical detector. A parametric representation of an LoR
isx =age, +ageg +we,, with w € R the parameter such that w = 0 corresponds to the point
closest to the origin. Using standard expressions for the e, g and e, in terms of the canonical
Cartesian basis, we can write the condition that the LoR intersects the cylinder of radius R at

(¢,2) as
agcosfcos — ay,sinp 4 wsinf cos p = Rcos @, (A.3)

agcosfsinp + a, cos p 4 wsinfsinp = Rsin ¢, (A.4)

—agsinf +wcosf = z. (A.5)
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Adding the squares of (A.3) and (A.4) gives the values

—agcosf =T

siné ’ (A-6)

Wi =

where T = | /R2 — a?p, for the parameter corresponding to each intersection. Substituting these

values into (A.3)—(A.5) gives the mapping u = F (L) as

b tan~! ((a,cosp + Tsinp) / (—a,sinp+ Tcosp))

¢ | | tan7'((—aycosp+Tsing)/ (a,sing+ Ycosp)) (A7)
o | (—ap+ Ycosh)/sinf '
2 (—ap — Y cosh)/sinf

We next compute the covariance X from (17). We calculate the Jacobian matrix VF and
invert it to obtain

1 1
(VE[u))" = 55
T T 0 0
o | —aecos 0sinf ay,cosBsind —sin 6 sin® 0
T2 -1 0 0
—apxgcos’d  apxgcos’d  —sind (Y +agcosh) sinf (Y —agcosh)
(A.8)
The covariance matrix then follows from (17) as
2
=
1 0 0 0
y sin® @ (R? /Y2 (1 +sin?0) —cos?0) /2 —a,,sin(26) /2 agsin (20) (R*/Y? —sin® ) /2
1?2 —a,agcos’ 0 ’
R*sin® 0 + aj cos® 6 (R*/Y? — cos” §)
(A.9)

where we use that ¥ = XT to avoid writing the lower triangle entries. The final covariance
matrix X, is simply the 2 x 2 lower diagonal block of (A.9), that is

5 g2 T2 —ayagcos*f A10)
2 —agapcos’d  R?sin® 0+ ajcos® 0 (R*/YX? —cos?0) ' '

Appendix B. Derivation of o2

We evaluate the outlier variance (24), defined as the volume of detectable LoRs:

27 R w/2 a;r
ng/duz/ dgp/ da¢/7 de/ dap. (B.1)
D 0 —R 6 ay

min

Here, the integration limits Omin and aét are determined by the condition that the LoR intersects
the cylindrical detector twice. They are found by first substituting (A.6) into (A.5) to obtain
the heights of the two intersections points

—ag =Y cosb

sinf (B-2)

2=
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Figure B1. Top view of a cylindrical detector surface, with a representative LoR (red)
emanating from a particle atx = {r,z} (black dot).

then requiring that —H/2 < z;» < H/2, to find

atf = FYcosf+ Hsind/2. (B.3)
Equating these gives the minimum angle for detectable LoRs,

Omin = tan~' (2T /H). (B.4)
Integrating (B.1) using (B.3)—(B.4) gives expression (25) for 08.

Appendix C. Derivation of G

We obtain an explicit form for G(x) in (27) which can be interpreted as a solid angle subtended
by the cylindrical detector from the point x. By symmetry, this depends only on the cylindrical
coordinates (7,z) of the point x which we can assume to be along the x-axis. The geometry
of the LoR is then as depicted in figure B1 when projected on the plane through the origin
perpendicular to the generator of the cylinder. The lengths b of the projections of the segments
of the LoR above and beyond the planes are found as

by =\/R? — (rsing)’ + rcos . (C.1)

The conditions for the LoR to intersect twice the detector are then that by cotf < z+H/2,
hence the minimal value of 8 for two intersections is

b_ b
hmin ;R,H) = -t -1 a . 2
Omin (7,2, 0; R, H) = max [tan ( /2—1) ,tan ( /2+Z>} (C.2)

It is convenient to non-dimensionalize variables by letting r = R7, z = HZ, and § = R/H.
Equation (C.2) can then be written explicitly as

. tan~! (Bf_) for < |22|, and for # > |2z| and ¢ > «,
uin (7.2, 01 9) = 4 20 (A=) for 7 <2 [22] and (C3)
tan~' (8fy) for7>|2%] and < ¢,
where we have defined
. 1 — (Fsing)® +Fcosp
fe (1 2,0) = (C4)

1/2+2 @
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Figure C2. The geometric function G, calculated for 7 < |2z (a) and 7> |2Z| (b) as a
function of the detecting surface aspect ratio 3 = R/H. The solid blue curves are the
numerical calculation of (C.5); the dashed red and dashed-dotted green curves are the
asymptotic solutions (C.7) and (C.8).

Substituting (C.3) into (27) yields

l/W(1+52f3)"/2d<p for i < |22],
G(#2) = 717 o . . (C.5)
- (/ (1 +ﬁ2fi)71/2d@+/ (1 +ﬁ2f2_)1/2dcp> for 7 > |2z|.

0 «@

The integrals can be evaluated numerically.
In the limits 5 < 1 and 8 > 1 corresponding to a narrow vertical cylinder and a ring,
respectively, the integrands may be simplified using a series expansion in 3 and 3!

L D e for < 1,
m S ) B AT, for B>

with ¢, = 1/2,3/8,5/16, 35/128, 63/256, - -- Substituting (C.6) into (C.5), we obtain

(C.6)

232 +452’;-1(%—|22|)
(1-22)% w(1—422)

G@zp) =1- [22 (2c+#sin2ar) — (1+427%)

X (arcsin (Fsina) + Fsinay/ 1 — (?sina)z) +0 (ﬂ“) , forpg«1 (C.7)

2 —2z)? P (4477 — 37
G(1z8) = m <F(?2) l(lﬁfz)wmza ?)W (C.8)
o[ (=22 (747 H (7 —|22))
+OE (") l] 24432 (1 —72)° ) TP
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X (l%E(aﬁz) (l _1+7) (3T4222)> — fsina —l—%
24432 (1 —72) 6532 (1 —#2)
" [?(l +122%) (921na+?‘231n3a) +2(3+422)
X <2F(a|?2) (1—#) —#Psin2ay/1— (i’sina)z)]> +0(B7°), forp>1

(C.8)

where H is the Heaviside step function, and F and E are the incomplete elliptic integrals of
the first and second kind, respectively,

S}

(€]
F<6|£)=/0 (1-gsin?p) "2 d, E(@|£)=/0 (1 gsin? )" do, C9)

with F(§) =F(n/2,£) and E(§) = E(w/2,€) the corresponding complete integrals. The
asymptotic solutions (C.7) and (C.8) are compared against the full numerical solution (C.5) in
figure C2.

ORCID iDs

Avshalom Offner © https://orcid.org/0000-0002-0590-2586
Sam Manger © https://orcid.org/0000-0002-4475-2066
Jacques Vanneste 2 https://orcid.org/0000-0002-0319-589X

References

[1] Parker D J, Broadbent C J, Fowles P, Hawkesworth M R and McNeil P 1993 Positron emission
particle tracking - a technique for studying flow within engineering equipment Nucl. Instrum.
Methods Phys. Res. A 326 592-607

[2] Dybalska A, Caden A J, Parker D J, Wedderburn J and Griffiths W D 2020 Liquid metal flow studied
by positron emission tracking Metall. Mater. Trans. B 51 1912-7

[3] Oerlemans C, Bult W, Bos M, Storm G, Nijsen J] F W and Hennink W E 2010 Polymeric micelles
in anticancer therapy: targeting, imaging and triggered release Pharm. Res. 27 2569-89

[4] Compton A H 1923 Quantum theory of the scattering of x rays by light elements Phys.
Rev. 21 483-502

[5] Moses W W 2011 Fundamental limits of spatial resolution in PET Nucl. Instrum. Methods Phys.
Res. A 648 S236-40

[6] Windows-Yule K, Nicugan L, Herald M T, Manger S and Parker D 2022 Positron Emission Particle
Tracking: A Comprehensive Guide (Bristol: IOP Publishing)

[7] Bickell M, Buffler A, Govender I and Parker D J 2012 A new line density tracking algorithm for
PEPT and its application to multiple tracers Nucl. Instrum. Methods Phys. Res. A 682 36-41

[8] Blakemore D M, Govender I, McBride A T and Mainza A N 2019 Multiple particle tracking in
PEPT using Voronoi tessellations Chem. Eng. Sci. 207 780-9

[9] Manger S, Renaud A and Vanneste J 2021 An expectation-maximization algorithm for positron
emission particle tracking Rev. Sci. Instrum. 92 085102

[10] Nicugsan A L and Windows-Yule C R K 2020 Positron emission particle tracking using machine
learning Rev. Sci. Instrum. 91 013329

[11] Odo A E, Govender I, Buffler A and Franzidis J-P 2019 A PEPT algorithm for predefined positions
of radioisotopes relative to the tracer particle Appl. Radiat. Isot. 151 299-309

[12] Wiggins C, Santos R and Ruggles A 2016 A novel clustering approach to positron emission particle
tracking Nucl. Instrum. Methods Phys. Res. A 811 18-24

19


https://orcid.org/0000-0002-0590-2586
https://orcid.org/0000-0002-0590-2586
https://orcid.org/0000-0002-4475-2066
https://orcid.org/0000-0002-4475-2066
https://orcid.org/0000-0002-0319-589X
https://orcid.org/0000-0002-0319-589X
https://doi.org/10.1016/0168-9002(93)90864-E
https://doi.org/10.1016/0168-9002(93)90864-E
https://doi.org/10.1007/s11663-020-01897-7
https://doi.org/10.1007/s11663-020-01897-7
https://doi.org/10.1007/s11095-010-0233-4
https://doi.org/10.1007/s11095-010-0233-4
https://doi.org/10.1103/PhysRev.21.483
https://doi.org/10.1103/PhysRev.21.483
https://doi.org/10.1016/j.nima.2010.11.092
https://doi.org/10.1016/j.nima.2010.11.092
https://doi.org/10.1016/j.nima.2012.04.037
https://doi.org/10.1016/j.nima.2012.04.037
https://doi.org/10.1016/j.ces.2019.06.057
https://doi.org/10.1016/j.ces.2019.06.057
https://doi.org/10.1063/5.0053545
https://doi.org/10.1063/5.0053545
https://doi.org/10.1063/1.5129251
https://doi.org/10.1063/1.5129251
https://doi.org/10.1016/j.apradiso.2019.06.011
https://doi.org/10.1016/j.apradiso.2019.06.011
https://doi.org/10.1016/j.nima.2015.11.136
https://doi.org/10.1016/j.nima.2015.11.136

Inverse Problems 39 (2023) 055003 A Offner et al

[13] Wiggins C, Santos R and Ruggles A 2017 A feature point identification method for positron emis-
sion particle tracking with multiple tracers Nucl. Instrum. Methods Phys. Res. A 843 22-28

[14] Windows-Yule C R K ez al 2022 Recent advances in positron emission particle tracking: a compar-
ative review Rep. Prog. Phys. 85 016101

[15] International Organization for Standardization 1995 Guide to the Expression of Uncertainty in
Measurement (Geneva: International Organization for Standardization)

[16] Beckers A L D and Smeulders A W M 1990 The probability of a random straight line in two and
three dimensions Pattern Recognit. Lett. 11 233-40

[17] Shepp L A and Vardi Y 1982 Maximum likelihood reconstruction for emission tomography /IEEE
Trans. Med. Imaging 1 113-22

[18] Parra L and Barrett H H 1998 List-mode likelihood: em algorithm and image quality estimation
demonstrated on 2-D PET IEEE Trans. Med. Imaging 17 228-35

[19] Streit R L 2010 Poisson Point Processes (Berlin: Springer)

[20] Lee K S, Kim T J and Pratx G 2015 Single-cell tracking with PET using a novel trajectory recon-
struction algorithm IEEE Trans. Med. Imaging 34 994-1003

[21] Gelman A, Carlin J B, Stern H S, Dunson D B, Vehtari A and Rubin D B 2013 Bayesian Data
Analysis 3rd edn (Chapman & Hall/CRC)

[22] Jan S et al 2004 GATE: a simulation toolkit for PET and SPECT Phys. Med. Biol. 49 4543-61

[23] Hastings W K 1970 Monte Carlo sampling methods using Markov chains and their applications
Biometrika 57 97-109

20


https://doi.org/10.1016/j.nima.2016.10.057
https://doi.org/10.1016/j.nima.2016.10.057
https://doi.org/10.1088/1361-6633/ac3c4c
https://doi.org/10.1088/1361-6633/ac3c4c
https://doi.org/10.1016/0167-8655(90)90061-6
https://doi.org/10.1016/0167-8655(90)90061-6
https://doi.org/10.1109/TMI.1982.4307558
https://doi.org/10.1109/TMI.1982.4307558
https://doi.org/10.1109/42.700734
https://doi.org/10.1109/42.700734
https://doi.org/10.1109/TMI.2014.2373351
https://doi.org/10.1109/TMI.2014.2373351
https://doi.org/10.1088/0031-9155/49/19/007
https://doi.org/10.1088/0031-9155/49/19/007
https://doi.org/10.1093/biomet/57.1.97
https://doi.org/10.1093/biomet/57.1.97

	A probabilistic framework for uncertainty quantification in positron emission particle tracking
	1. Introduction
	2. Formulation
	2.1. Forward model
	2.2. Bayesian inference

	3. Poisson rate
	3.1. Detection error
	3.2. Outliers

	4. Application
	4.1. Simulations
	4.2. Data analysis
	4.3. Results
	4.4. First-order inference

	5. Conclusion
	Appendix A. Mapping F and covariance matrix Σ
	Appendix B. Derivation of σ02
	Appendix C. Derivation of G
	References


